An Empirical Evaluation of the Local Texture Description Framework-Based Modified Local Directional Number Pattern with Various Classifiers for Face Recognition
نویسنده
چکیده
Texture is one of the chief characteristics of an image. In recent years, local texture descriptors have garnered attention among researchers in describing effective texture patterns to demarcate facial images. A feature descriptor titled Local Texture Description Framework-based Modified Local Directional Number pattern (LTDF_MLDN), capable of encoding texture patterns with pixels that lie at dissimilar regions, has been proposed recently to describe effective features for face images. However, the role of the descriptor can differ with different classifiers and distance metrics for diverse issues in face recognition. Hence, in this paper, an extensive evaluation of the LTDF_MLDN is carried out with an Extreme Learning Machine (ELM), a Support Vector Machine (SVM) and a Nearest Neighborhood Classifier (NNC) which uses Euclidian, Manhattan, Minkowski, G-statistics and chisquare dissimilarity metrics to illustrate differences in performance with respect to assorted issues in face recognition using six benchmark databases. Experimental results depict that the proposed descriptor is best suited with NNC for general case and expression variation, whereas, for the other facial variations ELM is found to produce better results.
منابع مشابه
Automatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملLocal Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching
Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملRobust Ldp Based Face Descriptor
This paper presents a novel LDP based image descriptor which is more robust to temporal face changes. LDP is a framework to encode directional pattern based on local derivative variations, hence LDP is highly directional. However texture based features extracted globally tend to average over the image area. Hence this paper proposes to divide the face image into multiple regions and perform LDP...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کامل